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It has been shown previously that dynamic fragmentation of brittle D-dimensional objects in a
D-dimensional space gives rise to a power-law contribution to the fragment-size distribution with a universal
scaling exponent 2−1/D. We demonstrate that in fragmentation of two-dimensional brittle objects in three-
dimensional space, an additional fragmentation mechanism appears, which causes scale-invariant secondary
breaking of existing fragments. Due to this mechanism, the power law in the fragment-size distribution has
now a scaling exponent of �1.17.
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Fragmentation of brittle solids has attracted increasing in-
terest especially after the observations of fragment-size dis-
tributions �FSD� of a power-law form �3�. Abundant experi-
mental data are now available for objects of varying material
and shape �1–6�. Several analytical and numerical models for
brittle fragmentation have also been introduced �7–10�. Most
of the analytical models are of hierarchical nature, i.e., a
large fragment first breaks into a number of smaller frag-
ments, which may then break further. Typically these models
lead to a power-law FSD with a material dependent scaling
exponent �8,9�. Very recently we have, however, produced
�5,6� a model in which the power-law contribution to FSD
results from mergers of side branches of the main cracks.

In this branching-merging process the smallest fragments
are created first, and the process continues with increasing
fragment sizes. With only few plausible assumptions, this
process leads to a universal scaling exponent 2−1/D in the
power law, which was found �5� to be in excellent agreement
with the results of large-scale rock-fragmentation experi-
ments with data extending over 12 orders of magnitude in
fragment size. Recent experiments on glass tubes �11� pro-
duced a power-law contribution to FSD with this universal
exponent for D=2. Agreement was not always equally good
�6� for fragmentation of gypsum discs that had somewhat
�D=2�-like character. Very clearly, this effect was in the
early results of Refs. �1,2�, according to which the exponent
is smaller than the proposed universal D=2 value for effec-
tively two-dimensional objects, while being fairly close to
the universal D=3 value for really three-dimensional objects.
A very clear dimensional crossover was observed, especially
in Ref. �2�.

Very recent experiments on the fragmentation of egg
shells appeared to produce �12,13� an exponent between the
�D=2�-like value of Refs. �1,2� and the universal 2−1/D for
D=2. All these results indicate, however, that there is an
additional mechanism in the fragmentation of effectively
D-dimensional objects in a �D+1�-dimensional space, not
captured by the branching-merging process that seems to
hold for D-dimensional objects in a D-dimensional space.
The experimental value of the new scaling exponents seems
to be somewhat unclear, however.

In this paper we determine, by analyzing in detail the time
evolution of the fragmentation of a brittle two-dimensional
�2D� system embedded in a three-dimensional �3D� space,
the nature of the process that leads in this case to a FSD of
power-law form. We can thereby explain the difference in the
fragmentation of 2D objects in a 2D space, which leads �6� to
the universal exponent quoted above, and in a 3D space,
which leads to a lower scaling exponent as observed in Refs.
�1,2�. We can also provide a rather accurate value for this
exponent. More specifically, we show that when a 2D object
breaks in a 3D space, there is, in addition to the branching-
merging process, a hierarchical process by which fragments
already formed are further broken into smaller fragments.
This secondary process also produces a power-law FSD. It is
thus scale invariant, and hence the secondary cracks must be
spatially correlated.

We use a numerical model in which periodic boundary
conditions are imposed on a moderately curved 2D disor-
dered brittle material �a torus� �14�. Elastic loading of this
system is performed by giving an initial impulse in the out-
ward �expansive� direction �z� perpendicular to the curved
surface of the torus, in analogy with a “slow” explosion pro-
cess. The subsequent fragmentation results from the breaking
�removal� of massless beams connecting mass points, whose
deformation exceeds a given breaking threshold. Motions of
the mass points in the directions tangential and perpendicular
to the surface are governed by discretized Newton’s equa-
tions of motion. The stiffness of the surface against out-of-
plane motion is regulated by making the masses at the lattice
sites anisotropic so that they can be formally bigger, e.g., in
the perpendicular direction, than in the tangential directions.
The inertia for radial deformations will thus be increased,
and the local strains in the surface will approach those in a
2D space.

First we give a short account of fragmentation by the
branching-merging scheme, which will be shown below to
dominate the initial fragmenting of our system. The model
�5,6� was inspired by the observation �15� that small frag-
ments were formed close to the first-formed main cracks
whose mergers produced the large-size contribution to FSD.
As the systems considered did not initially contain any major
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flaws from which cracks could have easily been nucleated,
the elastic energy loaded in the system at the time cracks
began to nucleate was relatively high. These main cracks
thus propagated very fast and were unstable against forma-
tion of side branches �16�.

The branching of fast cracks has been observed to appear
with a well-defined distribution for the branch-to-branch in-
tervals �16�. We can thus consider here a simplified model in
which side branches are separated by a constant interval.
Through long-range elastic deformation of the system around
any existing crack, adjacent side branches are attracted by
each other, and will eventually merge so that one branch is
terminated at a free fracture surface left behind by its neigh-
bor. It means that one branch propagates farther from each
merging point of two side branches and the same process is
repeated between the remaining branches. The fragments
thus created are formed in succeeding “generations” defined
by the numbers of mergers preceding them.

The linear size of the ith-generation fragments, assuming
the same aspect ratio �taken here as unity� in each genera-
tion, is given by di=hilb, where lb is the �average� distance of
adjacent side branches and h is the factor by which this dis-
tance is increased in each new generation. For the simplest
case of a homogeneous process, h=2, but the argument can
be generalized to the case in which h is not a constant but
approaches 2, asymptotically. The mass of the fragments in
generation i is given by si= �h� lb�Di for a D-dimensional
system. Given an initial number nb of side branches around a
main crack, the number of fragments in the ith generation is
ni=nb / ��hlb��D−1�i�. Taking the continuum limit such that
there are N�s�=n�s�ds fragments in mass interval ds, we eas-
ily find for the number density of fragments n�s��s−�, with
scaling exponent �=2−1/D. The main cracks, if uncorre-
lated, create an exponential contribution to FSD, and if the
side branches have a finite penetration depth into the system,
there will be a cut off in the power-law FSD. The full form of
this FSD with an exponential cut off is given in Refs. �5,6�.
In what follows we ignore for simplicity these exponential
factors in FSD.

The described fragmentation proceeds from small to large
fragments with exponentially increasing fragment size, and
the current fragment size �in generation i� is linearly related
to the current number of broken beams nbr�i�. The average
fragment size including the residual �i.e., the nonfragmented
part� in generation i, when NI fragments are assumed to be
produced in the first phase of side-branch mergers, is given
by

s̄i =
S

1 + NI �
i�=0

i

h−i�

�
1

1 − h−i , �1�

where S is the total mass of the system.
We follow the evolution of the fragmentation process by

simulating the numerical model introduced above. Instead of
the actual simulation time, we found it instructive to use the
number of broken beams as the measure of time. In order to
describe a real disordered material with defects, we intro-

duced in addition a number of uncorrelated defects in terms
of individual removed beams. In the simulations we used a
disordered square lattice consisting of 19 450 sites connected
by 38 900 beams, with Poisson distributed 4000 initial de-
fects �a concentration of about 10%�. Propagating cracks
nucleated at these defects as it demanded less energy than
�dynamically� creating first a new defect.

Fragmentation started to appear as the system had ex-
panded sufficiently, and the fragment-size distribution as-
sumed initially a clear bimodal form with distinct distribu-
tions for small and large fragments. It is instructive to follow
first the development of the maximum fragment size smax

� in
the small-fragment part of the distribution. We show in Fig.
1�a� smax

� as a function of the number of broken beams nbr.
It is evident from this figure that smax

� grows exponentially
with nbr, as expected for a FSD produced by the branching-
merging process. The simulated FSD shown in Fig. 1�b� for
a few values of nbr confirms that, for small enough values of
nbr, FSD has a power-law contribution with the universal D
=2 exponent �=3/2, even though the statistics of these data
are not very good. �Notice that, in this logarithmic scale, the
large-size part of the distribution is not clearly distinguish-
able, unlike in linear scale.� For increasing nbr the exponent,
however, decreases definitely below the universal value.

In order to analyze what actually happens for increasing
nbr, we plot in Fig. 2�a� the averaged sizes for all fragments
�s̄� and for the largest fragment �smax�, the number of frag-
ments in the small-size part �N��, and smax

� , all as functions
of nbr. These plots clearly indicate that the branching-

FIG. 1. �a� Average smax
� as a function of the number of broken

beams nbr. The line fitted to the data is �exp�1.17�10−3nbr�. �b�
The evolution of the simulated fragment-size distribution when time
is measured as the number of broken beams: �+� nbr=7000,
��� nbr=11 000, ��� nbr=15 000, ��� nbr=27 000. Lines �s−1.5 and
�s−1.2 are also shown as guides for the eye.

FIG. 2. Simulated evolution of the fragment-size distribution as
a function of nbr. �a� ��� Average maximum fragment size smax, ���
average fragment size s̄, ��� average maximum fragment size of the
small-size part of the distribution smax

� , and ��� number of frag-
ments in the small-size part N�. �b� The scaling exponent � as
obtained from fitting the number density of fragments by n�s�
�s−�, as a function of nbr.
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merging process continues until smax
� begins to reach the av-

erage size of all fragments. This is actually rather obvious as
side branches cannot propagate farther than the average dis-
tance between the main cracks. Up to this point the maxi-
mum fragment size smax stays rather constant, followed by
crossover to a power-law decay. This behavior of smax means
that fragmentation does not stop when the branching-
merging process stops, unlike in the previous simulations on
2D systems in a 2D space �6,10,15�. The second phase of
fragmentation is dominated by fragmentation of large frag-
ments formed during thefirst phase dominated by the
branching-merging process. This is consistent with the FSD’s
shown in Fig. 1�b�.

We show in Fig. 2�b� the scaling exponent of the simu-
lated power-law contribution to FSD as a function of nbr. The
crossover from the branching-merging process dominated
first phase of fragmentation, with ��1.5, to a second phase
with ��1.2, is very clearly displayed in this plot. This
crossover indeed appears at the value of nbr for which smax

�

equals the average size s̄. After the crossover the bimodal
shape of FSD also disappears. We should now try to under-
stand the nature of fragmentation in the second phase of the
process after this crossover.

According to Eq. �1�, for the branching-merging process s̄
should, after an initial decrease, level off at a constant value.
We can deduce from Fig. 2�a� that s̄ decreases, however, with
increasing nbr as a power law. By inspecting in detail a series
of snapshots of fragmenting systems, of which an example is
given in Fig. 4, we observe, in accordance with the results
shown in Fig. 1, that when the branching-merging process
begins to cease, fragments already formed begin to fragment
further. This secondary fragmentation process can thus be
considered as hierarchical. Contrary to typical models for a
hierarchical process, such as, e.g., the one in Ref. �9�, the
size of the largest fragment in the system does not remain
constant but decreases �cf. smax in Fig. 2�a��. Apparently
there are no stable fragments in the secondary process. The
size ratio of the new fragments produced by division of an
existing fragment appears to be a constant on the average.
Assuming thus that s̄i+1 / s̄i�constant, we find s̄i
�exp�−const� i�. For a hierarchical process with a power-
law FSD, one must have nbr�exp�const� i�, and we can
conclude that

s̄ � �nbr�−� �2�

with a constant ��0. This behavior is confirmed by simu-
lations, cf. Fig. 2�a�.

The relevant time scales related to the branching-merging
and hierarchical processes are very different. The branching-
merging process is initially very fast in producing the small-
size part of FSD, so that the largest fragment of this part
grows, as explained above, exponentially with nbr. The hier-
archical process takes off very slowly, but eventually begins
to form new fragments at a rate that grows exponentially
with nbr, while not appreciably affecting the growth of smax

�

that is still dominated by the branching-merging process. By
that time the latter process produces new fragments with a
rapidly decreasing growth rate. There should thus be an in-
terval in the fragmentation process during which smax

� �N�

with � a constant. Here, as before, N is the total number of
fragments �which depends on time�. We show in Fig. 3 a
simulated smax

� as a function of N. These data display a clear
power-law dependence with ��3.44.

In Fig. 4 we show a series of snapshots of the fragmenta-
tion process as described by our numerical model. The small-
est fragments are indeed seen to form close to the first propa-
gating cracks as assumed in the branching-merging process.

The FSD resulting from fragmentation seems to continue
to be a power law even after the onset of the hierarchical
phase of the process. In order to confirm this, we plot in Fig.
5 a differential fragment-size distribution Nd�nbr��N�nbr�
−N�nbr

�o�=11 500� for nbr=17 000. This differential distribu-
tion is dominated by the hierarchical process as nbr

�o�

�11 500 is the crossover point. It is evident that the process
is indeed scale invariant with a scaling exponent of �1.17. A
large-size cutoff begins to appear at nbr�18 500.

As the FSD of the hierarchical phase of the process is also
scale invariant, the cracks responsible for the secondary
breaking cannot be randomly distributed, which would result
in an exponential FSD �6,15�. The contraction force due to

FIG. 3. smax
� as a function of the number of fragments N. A

power-law fit gives smax
� �N3.44, which is shown as a line.

FIG. 4. Snapshots of a disordered lattice of beams undergoing
fragmentation, �a� nbr=6000, �b� nbr=12 500, �c� nbr=14 500, �d�
nbr=27 000.
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the curvature is now able to relax the one-dimensional crack
surface through the two extra degrees of freedom per lattice
site �the position and velocity in the perpendicular direction�
more effectively than in the case of a surface strained in a 2D
space. The expanding fragment is contracted at its edges, and
the maximum strain thus appears at some distance from the
crack surface. Hence, in a system of a curved surface, sec-
ondary cracks tend to be nucleated near existing crack sur-
faces. In this way they become spatially correlated.

In order to check that the hierarchical phase of fragmen-
tation is indeed related to the dimension of the space being
higher than that of the fragmenting object, and not, e.g., to
the curvature of the surface, we varied the radius of curva-
ture. We found identical results using, in each case, the
smallest possible loading of elastic energy needed to frag-
ment the whole system. The behavior was also found to be
the same in the case when the system did not initially include
broken beams.

Finally, we checked the effect of dimensionality by mak-
ing the masses anisotropic such that inertia was bigger for
motion in the perpendicular direction. In this way the stiff-
ness of the out-of-plane motions is increased in comparison

with the in-plane motions, and in the limit of large out-of-
plane stiffness the system becomes effectively two dimen-
sional as the additional degrees of freedom are frozen out.
Simulations for increasing out-of-plane stiffness displayed a
clear crossover to the universal D=2 scaling exponent for
high values of stiffness.

In conclusion, we have shown that dynamic fragmentation
of a 2D system in a 3D space begins with the nucleation of
propagating cracks, and the merging of side branches formed
around these cracks. This branching-merging process pro-
duces a power-law contribution to FSD just as in a 2D space,
with the universal D=2 scaling exponent �=3/2. Unlike in
the latter case, fragmentation does not, however, stop now
when the branching-merging process is terminated. It contin-
ues as a hierarchical fragmentation process that is also scale
invariant. The scaling exponent related to the hierarchical
FSD is �1.17. By increasing the stiffness of the out-of-plane
motions, we confirmed that there is a crossover to the uni-
versal D=2 scaling exponent when the third spatial dimen-
sion is effectively frozen out. Our results seem to be in ex-
cellent agreement with those of Refs. �1,2�. For fragmenting
egg shells �12,13�, an exponent �1.35 was found for the
power-law FSD. A possible explanation for this value is that
it is related to a transient phase in which the hierarchical
process was not completed �cf. Fig. 1�. Also, if the full FSD
with the exponential terms included were used �5,6�, the data
of Refs. �12� could be fitted with the universal scaling expo-
nent 3 /2. The out-of-plane motions may well have been fro-
zen out in fragmenting egg shells. This happens in, e.g.,
small gypsum fragments, which leads to a beautiful dimen-
sional crossover in the FSD �2�.
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